
A major purpose ot tne I ecnnl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information
DOE’S Research and
Reports to business,
academic community,

contained in
Development
industry, the
and federal,

state and local governments.
Although a small portion of this

report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

LA4JR -85-523

TITLE OPTIMIZING COMPUTATIONALEFFICIENCY AND USER CONVENIENCE
IN PLASMASIMULATIONCODES

AUTHOR(S): Christopher W. Barnes, X-1

LA-uR--85-523

DE85 007661

SUBMITTED TO To bc published in the proceedings of the Second International
School for Space Simulations, Honolulu, Hawaii, February 3-16, 1985

DISCLAIMER

Thin rapt was prepmod a! mt accwnt ofworkn~rmord by an qcncyof the Unilcd Stat~
Governr,mnl Neither tho United States Government ffOr WIySgCnCylhfJWOf, nornnyofthelr
employ-, mnkoi any warrnnly, axpromor impllod, orassumet ●ny legIIl Ilabililyor rmponnl.
blll:y fortha accuracy, completonoe+or uwfuhtaofmty Information, ●ppmatus, produci, or
promo dlsclod, or roprcsonla Ihml Its uw would nol lnfrln~e prlvatoly owned rlghto. Refer.
enca haroln to any npelflccommwcial prduct, p~, or wrvlcoby trnde name, trademark,
mmtufncturer, or othwwiM dm not n~rily eonstltuto or Imply III endorwmetlt, mom.
mend~tirm, or fnvoring by the Unitd ‘~ta!~ Government or ●ny q~ency thereof. The virJwa
and opinions of ●uthom exprcwcd hclcin do not nooassarily stmc Or rofloct thm of the
United SMIeI Oovernmant or nny ●goncy thereof.

lLQEWMilTOSksAlamos,NewMexic.8754~
LosAlamos NationalLaborator

h@T[CE
IIONSOF iHISREPORT AREILLthid~~- --- —

“as berm reproduced from the best MSIWIMU w m DU’Uwl B Wlmll[ll
.’)Ifmhtm mmma A- _______ . . . 9$

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

OPTIMIZING (: OMPITTATIONAL EFFICIENCY AND IISER (: ON-
“VENIEN(’E IN PLASMA SIMULATION CODES

Christophw W’. Barnes
Los Alamos National Labwat ory
Los A]amos. N(JW Mexico

ABSTRACT. It is usually important to write pla~ma simulation codes in sil~l] a
way that they execute efficiently and arr convenient to use, 1 discuss here pract iral
techniques to achieve this goal. Numerical algorithms must be well formulated
and advantage taken of machine architecture in casting the algorithm into a high
level language such as Fortran. The advantages of writing critical rout inrs in
.4ssembler are discussed, For large simulation codes, disks must often be used as a
temporary store for working data. Eflicient methods for doing this arc proscntcd.
Codes must not only be w(BIIorganized for ease of implementation and maintmancc.
but also for ease of USC. \\ays are suggested for piwkaging codm such that sw up.
batch production, restarting and diagnostic postprocessing is facilitat~d. I’articuliir
emphasis is placed on graphics postprocessors, since they must be used in real timo
with g~aphics terminals as well as with hardcopy devices,

1. Introduction

The purpose of this tutorial lecture is to present what experience hm~shown to be
good programming practice in the realization of plasma simulation codes for use
cm Ilm.lwn cmnputcrs. I assume that you are well versed in a language such as
lbrl IiIJI. and have used Iargr cmnputcr”installat ions in your everyday work. you
nm}mHOI yet hawc written and used a program that consists of many thousands
01 1111(’? of sourc(’ ~odc and that consumes many hours of compulcr lime. Thr
il)l(’]ll(llt ;IIIOIIof non-trivial programs such as this requires careful planning and
nlilldlullwss of Ihr physical nature of the computer system to be used. if efficiency
anil convcnicmcc are important. Thesr considerate ions me likely to be important in
ti Iargc code since th~ programming nlanpower needed is only justified by a long
product ion Iifc of lhc code.

II seen]s to be true that plasma simulation codes are never written once, and
then UMVIfor~wer without nmdification. lnst.cad, there is always new physics to
illcludc. new numerical algo! ithms to try or a change n~ded in the diagnostics
packtigc. }“OUshould assume that your new code will never be ‘finished’ and there-
Iore should make ease of maintenance a primary consideration in its design.

Can we now identify the principal characteristics of plasma simulation codes
that are relevant to optimizing efficiency and convenience? The mosl prominent
feat ur(’s are the need for large amounts of romput irig time and t},e large amount of ●

tat a used. The data base can exceed tht’ storage capacity of the machine”s central
nwnlory and might thmefore need to be stored on disk and brought into memory
as nmdcd. The amount of computation done on a unit of data each time it is
brought in from disk could be an issue. if it is desir(d to ovrrltip disk transfers
with computation. Part ic!e codes are the worst of!knders here, The particle move
time can be as little as two microseconds on a CR.4Y-I per tin~estep while the disk
read,’writo time is several times this per particle, Simulation rock calcul:ltc the
ev~lutic.m of q plaslliti ower til.le in a series of small timesteps. each strp :ypically

‘ consisting of a part,icle or fluid element advance followed by an updating of the
selfconsistent rlectric and magnrtic fields, As the calculation proceeds, diagnostic
data is producod in vast quantities and is r;ther saved in raw or partly reducm!
form or is displayed or plotted directly. The diagnostic portiorw of a code can
rcprcscnt as much as R(I ~tcrccnt of t)m total number of sourcecode Iinm in the
program. FortunateIcy they usually can be made to use only a small part of the
tot til mnnputo t inw uwd in a run, They there(me need not be highly optimizod.

Since t hc~c codes ~a]chlate the evo]ution of a plasma over time. it is desirable
to be al}lc 10 chrckpaint the data occasionally bci that a problenl can bc restarted
wit bout h~ving to start from scratch. Often, a problem will he exerut.~d in mweral
runs tmcauw of tinm constraints or to allow ana!ysis of thr problem results pnrt
way through. The ability to save the working datu at a particular timcstcp and in n
subwqucnt run rest tirt from it is thcreforc c.onsidercd ewmtial in pla~ma sirnulat ion
codes,

2. opiirnization

In this section, 1 will discuss various ways to ensure that the code wns as efficient Iy
as possible. without an excessive amount of programming effort, We will find that a
rougl] kriowledgr of thc computer architecture being used and some undt’rst tindillg
of hov. the compiler makm use of that architect rue, \vill allow us to make SU}JSI~nliii!

iII(roiism t o mwcul ion dficiency.

The CR.4Y series of computers is now in wide spread use and is a primo vxample
of what is Iinmvn as a vector or pipeline machine. It has the ability to eflecti~rly
perform an opcral ion on a vector or array of data almost in]Jarallel. 01]:0 thc
operation is initiated and after a short latency, the results appvar one per macllinc
cycle. The real power of this method lies in the fact that thr overhead for index
and address gm-wriition for the arithmetic or logical opcrat ion to he per forltwd ntwl
only be done once, for the whole vector.

All vector machines also have the. ability to do scalar operations. since sonle
cod~ is inherently unverlorizable. lt is easy to show that vectorization can provide
a factor of five speed increase over code executed only in the machine’s scalar
units. The objective thw:. wheil v.riting in Fortran for instance, is to convince the
con]piler to vectorize as much of the code as possible to achie~e maximum speed,
Even so, it is sometinm worth hand coding small portions of the program.

The maximum vecior length allowable on the CR .4}’ series of cornputws is 61
operands. For vectors longer than this, the compiler must break them into a serirs
of vectors of length 64 or less. It is true that the hardware performs best when the
vector length approaches 64. The brcakevcn point against scalar speed is a v(~lor
kngth of about 5.

A constraint against use of the vector units is that vector operands must bc
stored in memory with a constant ‘stride’, or spacing in address, This propmty
mfikes writing of particle movers especially difficult, since the cell locilt ions for a
vector of particle~ are random, certainly not of constant ‘stride”, It is worth noting
that CRAY’S upcoming X-MP48 will have the capability of doing ‘scat tcr~gathcr’
vector memory references, ie, non-constant stride, Bank conflicts will still degrade
performance, however.

Merriory is arranged in banks, or physical units such that a%onc strps through
sequential memory addresses, a different hank is accessed each tim~ until the nunl-
ber of banks has been cycled through, typically 16, Since the memory CJCICtinw
is much greater than a machine cycle, rapid hits to the same bai]k ral] slow ticcws
Significantly. One should therefore avoid vector operations with strides which coil -
tain factors of 8 or 16 (or some similar power of two, depending on the nurnher of
banks in that particular machine).

2.2 Fortran (optimization

Opt imization of Fort ran codes is best done experime]ltally. since one can not always
predict hou the compiler will treat a given style of coding. Find a timing routine
whi[tl reads a microsecond clock, or preferably a machine cycle clock. Then Iwo
calls 10 this routine m-ill rne=urc the time spent in the piece of code brackcti]]g
t}lr iivo ca~k. Thr timing effect of coding changes can easily be seen using ~his
111(’lllf}li.

in scalar codr. or code to bc executed on a non-vector machine. an! thing
can affect tht’ timing. DO loops are a basic construct in Fortran. In any code
unit containing DO loops, an innelmost loop can be found where the majority of
the time is spent. I’nnecessary expressions shou]d be kept out of the inner loop
(so!llctimes the compiler \\ill do Ihis for ~-oL~).Index calculations should be kept
a slmplc as possible with the idea that each time through the looD, there will be
as lit[le calculation needed as possible. Sometimes non-changing portions of the
index can be calculated outside the inner loop. Multi-dimensional arrays should
be a~oidcd. It is usually best to explicitly compute the mapping of a multi-
dimensional index into a one-dimen’ional array. Ilse can be made of the fact that
in Fortran. the first listed index is the fastest varying one, that is, is the contiguous
one in storage,

In Fortran, vectorization is achieved not by special vector notation. but by
finding suitaht I DO loops \vhic.h lend themselves ‘o vectorization. The array indices
must not improperly overlap and the flow of the loop nlust IIOt be interrupted.
This means that there can be no IF tests within the loop, In a particle moving
routine. the tests to see when a particle crosses a bo~’ndary \vill apparently not
vecto-ize in Fortr~n, and should not be put in it loop with other operations which
can. , nterestingly. t}]e machine instruction which performs the comparison has a
\PctPr form. The inclusion of a branch as a part of the IF construct makes it
non-~ ectorizable.

\\’he]) there arc nested DO loops which are vectorizable. it is sometimes of
advanti.ge to reverse their order. although this is not always logically possible. 1
recently did this in a sll]all FEL code in \vhich the inner loop had a span of around
20 and thp outer a span of over 200. The speedup under these conditions was
significant a]though as the span of 20 w’as increased totvards 64. thv difference
became negligible as or,c might expect.

I learned an interesting lesson about libraries in working on this code. .4t
least half t}]c time in thl cod(was spent in calculating sin~ and cosine pairs (of
the san]e argument). This was done using a call to a wctorizcd sine and then
a vectorized cosin? routine. 1 took the trouble to look at the CAL source code
for tllcsc routines, I discovered that t!le same routine was called for both sine
and cosirm, and that because the. vector arguments could be in any octant, that
the routine al~ays calculated both sine and cosine, and threw away the one not.
needed. 1 was able to modify the ro~~tine so that it returned both sine and cosine
with onc call, eliminating the need for the second call. So~necme had thought of this
Ilrforr, of course. 1 found an entry point in the library to a COSSIN routine t~hich
did what I just described. Except it made calls to scalar routine which would ha~e
been far slower. Apparently the person who wrote and maintained the library had
time only to make the COSSIN function look vectorizable to the calling routine,
but not to actually provide the code needed. The lesson is apparently that library
writers are human too.

2.3 Why I-land Code?

%J]]Ic]xwplr arc born IIackcrs, and have writtrn in Asselnhler for M long as th~y
cii II re]]lcrrll)er, Others need solne persuasion to learn and use asseml)l~ la]lguage
ill ll~(,il ((1(1(+. T])(I trIItll i+ thal it is OfICIIjustified in todw SUC}Ias particle c{)~l(,s.
~vl]cr(’ II IOSI Or I,IIC time is taken up by a feIv hundred lines of Fortran. the }~a])d
((jtli]]g {J! wl~ich col]]d acl~icve a spcwdup of a factor of two, \-ector (-o(Ic is riis}
10 Ililll(l ((1(1(lJecau>c Jou don’1 have to worry- about ltlc till]ing of Iht’ scalar]Jarl
(illdcxing. c(lunling. dtc). In my Ficw. vm-tor COdC is t]IC on]y kjrld] ,vou]d cansid{,r
wort h I II(, effort of hand coding.

The t;rii~- lnachincs have eight vector registers and a number of functions!
units each of tvhich per fornls a specialized grol~p of operations. The~: have nall]e+
like ..Floati]lg Point Add Unit . ‘Floating Poirlt hfultipl~ Unit’., ‘Sh]fl (“nit.” irl;{!
“Logical Func!ion [’nit’.. \!cmory references can b{’ thought of as being performed
Ily a special functional unil. In rough terms, the ru!es are that ~-ou ran ha~”c as
many functional unils going at once as you want, so long as the rules of rrgis[cr
conflict are observed. It is possible to keep four or five functional uni[s going
sinlu]taneous]i~ in a hand coded particle mover.

3, Convenience

\?’hen a new code is being conceived and written, or when an old code is being
impruoved. the rush to get the job done often allows us to do a poor job of planning.
commenting and documenting the code. I’he result is a code that is intonv~’nierrt to
run, particularly by the code’s non-au tors. Code maintenance may also bc near]y
impossible, even by the author. \l’e quickly forget what we intended ~vhen JYe
wrote the code, and If there are no comments iml-wdded in the code. we may be
reduced to analyzing the Fortran to try to figure out lvhat it does. 11’the code is
well structured, this may not be difficult. Jf it is a mass of GO TO staienlcnts,
it could be impossible. I wrote a data handling routine once for a Farticle COI-IC
that had such con~oluted logic that 1 could lle~er understand the a]gorithln JVCI1
~nough to follow the logic of the code I had written. At one point, it passed all the
tests, so 1 knew it worked, so 1 stopped ~vorking on it knoi~’ing that if it ct(’r I)rolic
1 wouldn’t be able tn fix it. By the time 1 finished the job, 1 knew a lot aboul
structured programming a]ld documentation.

The following paragraphs set out my recommendat ions on lIOMto la, out a]ld
\vrite a cocic for ease of use and maintenance and how to orgaliize it so t]lat it can
bc used conveniently without need for an intimate knowledge of how it works,

3.1 Overall Design

1 always design my codes so that the graphica] output is generated in ~ p(~s~proccs-
SO]. The main code saves diagnostic daia periodically in as raw a form us possiblr.
Decisions as to what data is to be taken and at what inter~als and with what
completeness and precision tire made when the physics code is mt up and run, Tho
postprocessor reduces and processes the dat& and hen plots it graphically, Many
decisions, particularly about, graphics options can be made at post process t irnc.
Since the postprocessor can be rerun rheaply by comparison to the original physics
run, lost fiche ore a mistyped graphical parametm is less likely to rause grief, Th[’

other advantage of keeping the graphics routines in the postprocessor is that they
cannot invade and wcrrun the physics code and thus destroy its legibility. The is
no temptation to put graphics calls inside a particle mover, for im.t.ante.

TIIC COC-ICis designed to be rest. artable. At prcdcterrnined intervals, a ccqy of
all the working data is written to a set of files. with suilable names. at, the cn(, 01’
the run. III(W files. along ~vith the diagnostic. files are l~ritten to pcrmanenl mass
store. If it is desired to continue this run for say another hour. the data files arc
lnade avail al~lc so I}lal the code \vill nol start from scrafcl]. but resume \\l)rr(I i[
lefI off. in addition 10 providing convenience of running the code, this design helps
bullet proof the code against machine crashes.

The code is set up to look for data or commands to be entered from the
keyboard during operation. Once each tirnestep. it looks for prearranged signals
from the keyboard. It is therefore possible to stop the run, force a data dump: ask
for data to be printed at the terminal. etc as the code runs. In principle, there is
no lilnit to the degree of interactivity one could incorporate. lt should be noted
that the exact same cone can be run in a batch subsystem Ivithout any need to
interact with a terminal.

Parameter initialization is done using Namelist variables. All parameters are
initialized to default values inside the code and only those that differ from the
default values for a gi~en run need be mentioned in the input deck, The input deck
is either a file or it can be typed in at run time from the terminal if need be,

3.2 postprocessor

The postprocessor is designed iC produce graphical oulput from the data saved in
the running of the physics code. The output can then be sent to a plotter of some
kind or vieJved directly on a graphics terminal. A more sophisticated postprocessor
might allow one to design plots on the fly. to better examine some feature in the
dafa for instance.

3.3 Internal Structure of the Code

Internally. the code should be organized into many, logicalll independent subrou-
tines, N’o code block should be n-,ore than a few hundred lines in length, excluding
comments. m’hicll should double its lcrrgth, Liberal use of common blocks makes
argument passing almost unnecessary. The idea is to make the code as easy to
understand as possible,

in hand coded particle movers, 1 like to use four or five separate subroutines
for tile CAL mover, each to perform a logically separate part of the move. \f’ith
each set of calls, a vecto~ of 64 ptuticles is moved. Within a Fortran bookkecpirig
subroutine, the sequence might bc as follmvs: A CAL routine is called which un-
packs the palticles and calculates cell numbers and weights. Another CAL routine
(alculates the field values for the 64 particles. A third CAL routine advancm the
particles. A fourth CAL routine rccalculatm the CCII numbers and weights and
repacks the particles. Finally, thu weights are used to accumulate the charge Rnd
current arrays in the last CAL routin~. ‘I’his is the basic cycle. Between these calls
to the CAL mover, one can insert calls to Fortran diagnostic routines, particle
injectors and routines to handle unusual boundary conditions. Thus it is possible
to tightly intermix CAL and F’oliran r~mtines cleanly. Even at the levc! of moving

only 64 particles, the overhead of all these subroutine calls is small enough to bc
ignored.

In the previous section, 1 mentioned that particles can bc packed and unpacked.
Bj that 1 meant tha! it is often possible to conl])act Ihe particlt? data by a fiiclor
of two in order to save space in men;~r~ or to rvflllcc tllc time nccdrd 10 tran>fcr
the data to and from disk. This is a common priictico in codes such as this.

